The Mental Lexicon

Ask anyone what the basic building blocks of a language might be - Words
This much is obvious, but the rest is a complete mystery.

Prior to Chomsky’s generative theory of syntax (1964), linguists gave priority to the description of words.
Field workers had a concern in collecting words for undocumented languages.
Historical linguists inferred genetic relations between languages by comparing words.
Psychologists assumed children acquired language by learning words.

Chomsky’s theories brought phonology and syntax to the fore, stressing the structural relations between phonological and syntactic categories.

Linguistics is now in the midst of a rediscovery of the word; started by Joan Bresnan’s work on a Lexical-Functional Grammar that claimed to be a ‘realistic theory of grammar’. This position has been adopted by Chomsky as a cornerstone of his ‘minimalist’ program.

This theory puts the word at the heart of a linguistic description by recognizing the role words play in unifying information from different parts of the grammar.

Syntax Phonology
\[[p \ldots NP] \quad [\text{In}] \]

Acquire a language by acquiring words & their associated grammatical features.

We’ll investigate these relations later on,
For now focus on general properties of our mental lexicons

Size

Psychologists have long known vocabulary size was correlated with iq
Most intelligence tests rely heavily on measures of vocabulary size.
More recently Sue Kemper et al. have found a correlation between vocabulary size and risk for Alzheimers amongst the elderly.

Let’s start with a simple question and ask how many words do we know?
5,000 10,000 50,000 100,000 500,000 1,000,000?

Make a guess. How do we test?
One solution starts by checking how many words you know in a dictionary.

Start by checking how many of the words on a page you recognize
No. of words = proportion of recognized words x no. of words in dictionary
(Seashore & Eckerson. 1940. The measurement of individual differences in general English vocabularies. J. of Educational Psychology 31.14-38)

Now we can start asking about the technical details

1. How does the size of our dictionary affect our estimate?
 The size of English dictionaries has increased exponentially over the last 400 years

<table>
<thead>
<tr>
<th>Name</th>
<th>Dictionary</th>
<th>Year</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Cawdrey</td>
<td>Table Alphabeticall</td>
<td>1604</td>
<td>2,500 words</td>
</tr>
<tr>
<td>John Kersey</td>
<td>New English Dictionary</td>
<td>1702</td>
<td>28,000</td>
</tr>
<tr>
<td>Samuel Johnson</td>
<td>Dictionary</td>
<td>1755</td>
<td>40,000</td>
</tr>
<tr>
<td>Noah Webster</td>
<td>American Dictionary</td>
<td>1828</td>
<td>70,000</td>
</tr>
<tr>
<td>Noah Porter</td>
<td>Dictionary of English</td>
<td>1864</td>
<td>114,000</td>
</tr>
<tr>
<td>Isaac K. Funk</td>
<td>New Standard Dictionary</td>
<td>1913</td>
<td>450,000</td>
</tr>
</tbody>
</table>

(Miller, p. 135)

2. What counts as a word? What does your dictionary count as a word?
 Divide no. of words by no. of pages = average no. of words per page
 How does this estimate correspond to what you find on the page?
 Dictionary counts all boldface entries
 forget, forgot, forgotten, forgetting, forgettable, forgetter & forget oneself
 forgetful, forgetfully & forgetfulness
 1. Should we count all of these? 2. Why are they arranged in two separate entries?

Start with the first question. What counts as a word? What is a word?

Free form / free morpheme
 a. occur in isolation
 b. separable from other words

Some words appear to be half way between free forms and bound forms. The linguistic term for such words is clitic. A clitic can be separated from other words, but is still phonologically dependent on other words,
 e.g., English articles *a/an*, English negation *not/n’t*
 Are all of the entries under *forget* free forms? Are they separate, but equal?

They are inflected forms of the word *forget*. Demonstrate various types of affixation:
 inflection forgot, forgotten, forgetting
 derivation forgettable, forgetter, forgetful, forgetfulness
 compounding forget oneself
Reason to think these forms are stored differently in our minds
inflection does not change meaning significantly-predictable
derivation sometimes produces unpredictable semantic changes
compare forgetter, walker-2 entries, teller (bank)

compounding usually results in unpredictable semantic change
forget oneself: lose self-restraint

K’iche’ Maya compounds
saqa b’ala:m raxa:l q’ana:l
white jaguar = ocelot greeness yellowness = glory

b’aqwach tap rax te:w
eye crab = hangnail green cold = malaria

Inflected forms are predictable from their part of speech and meaning
In other words, they can be generated on the fly by the grammar

Many derived forms and most compounds have unpredictable meanings
They must be stored in the mental lexicon.

Another problem words frequently have more than one meaning, e.g., net, press, break
Should we count these different uses as different words?

There are many other processes we use to make up new words:
Conversion, e.g., target (V) from target (N)
Acronyms, e.g., radar (from radio detecting and ranging)
Abbreviations, e.g., tv, id, vd, oj, aids
Blends, e.g., spam (spiced/ham), smog (smoke/fog), spork (spoon/fork)
Clippings, e.g., Alex (from Alexander), doc (from doctor), rent (from parent)
Backformations, e.g., enthuse from enthusiasm, donate from donation, pea from pease
Coinage, e.g., xerox, kleenex
Onomatopoeia, e.g., meow, cheep, ribbit

There are many words that are not included in dictionaries:
Names: Bill, Ted, Sally, Lassie, Seabiscuit, Kansas, Dodge, Kaw
slang: Valley girl, break dance
taboo words: shit, fuck
exclamations: oh, uh, m, mhm, yeah

3. Make a distinction between words we use and words we recognize
 = production vs. comprehension lexicons

For all of these reasons, estimates of average vocabulary size vary considerably
Seashore & Eckerson: 58,000 basic words
 1,700 rare basic words
96,000 derivatives and compounds
> 150,000 total

Nagy & Anderson 45,453 basic words
42,080 semantically opaque derivatives & compounds

estimate average high school graduate knows 45,000

Diller 1978 estimated ~ 250,000 total words for college students

These estimates are 100 to 1,000 times greater than the most optimistic counts of animal signs. Underline the quantitative difference between human language & forms of animal communication

Speed

Once we have an estimate of vocabulary size we can begin to estimate the speed of lexical look up

Imagine going through an unorganized list of words to see if it contains the word *boat*
You find the information faster in a dictionary, but this still takes time

Normally speak at a rate of 6 os/sec ~ 3-4 words
Native speakers recognize a word in 200 msecs (1/5 of a sec) from the beginning of the word
Often well before all of the word is heard (Marslen-Wilson 1989)

A speech shadowing task is a traditional technique to test access speeds
Subject repeat what they hear in headphones
Good shadowers can repeat with a delay of 250-275 msec
Subtract 50-75 msec for time to convert word to speech
-> 200 msec for word recognition (= 1/5 sec.)

Ask yourself whether *plid* is a word
Took my 90 MHz laptop about 2 secs to respond Its lexicon is much smaller than mine

Assuming that you have a basic vocabulary of 60,000 words
and search through them at the rate of 100 words/sec
It would take 10 minutes to search through your entire lexicon

The size of the average lexicon and the speed of lexical access
(I’ll add the ease of lexical acquisition, too)
point to a systematic organization for the lexicon

There are tradeoffs between the size of the lexicon and access
Imagine trying to cram books into a room. Cram the maximum no. by simply stacking the room full. That won’t do a lot for access speed, though.
Accuracy

We occasionally make mistakes in the retrieval process
Mistake nonwords for real words: *concision*
Confuse *reluctant* (unwilling) and *reticent* (unwilling to speak)
 deprecate (disapprove) and *depreciate* (lower in value)
 foreboding (ominous) and *forbidding* (dangerous)
 effect (cause) and *affect* (influence)
Speech errors or slips of the tongue (or pen) show that lexical access isn’t a simple mechanical search.
Most confusions due to similarities in pronunciation and/or meaning.
More frequently used words are accessed faster and more accurately
We are also constantly updating our lexical store to reflect the lexical environment
 What do you put groceries into at Dillons (a bag or a sack?)
 No computer has the power to invent new words: *spork* (spoon + fork)
We recognize the gaps in our dictionaries
 starve s.o. out by denying them food; what about denying s.o. water?
Intelligently organized, dynamic store of lexical information
 available to every user of a human language.

Production

What do we know about the word production process?
Evidence from slips of the tongue:
MEANING
 The white (=black) sheep of the family.
 They’ve ended (=started) the third week of their strike.
SOUND
 A reciprocal (= rhetorical) question.
 The audience (ordinance) survey map.
MEANING AND SOUND
 You’re a destructive (= disruptive) influence.
 Look at this badger (= beaver).

The Stepping-Stone Model
Assume the parts of words are activated in sequence:

```
    Meaning       Sound
        ---->    --------->
          BEAVER    bivər
```
Assume multiple candidates are activated at each stage:

- OTTER → beaker
- BEAVER → beaver
- BADGER → badger
- RABBIT → bearer
- OTTER → offer

The model predicts these errors will appear at each stage.
The model does NOT predict an interaction between meaning and sound
Most errors feature a similarity in meaning and sound.

The Waterfall Model

The waterfall or ‘cascade’ model (McClelland 1979) makes all of the information from the semantic stage available to the phonological stage. Once a set of meanings has been activated, the information cascades down to the activation of sounds.

Problem: the waterfall model doesn’t allow information to flow backwards. It’s common to prompt people to recall a word by giving them an initial sound, e.g., think of a small woodland animal whose name begins with a b. The waterfall model shows how meanings activate sounds, but not how sounds activate meanings.

Neural Networks

The key to capturing lexical activation is allowing activation to spread in multiple directions: from meaning to sound and from sound to meaning. The progressive activation of possible
candidates and the suppression of unlikely candidates continues until one word reaches a threshold. Frequently used words reach this threshold faster than infrequently used words.

References